Aufgabe 1

Die Punkte A(2|2|3), B(2|2|6) und C(2|5|3) bilden ein Dreieck.

- a) Ist das Dreieck gleichschenklig?
- b) Ist das Dreieck rechtwinklig?
- c) Bestimmen Sie den Flächeninhalt des Dreiecks.

Aufgabe 1 – Lösung

$$\overrightarrow{AB} = \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix}$$
$$\overrightarrow{AC} = \begin{pmatrix} 0 \\ 3 \\ 0 \end{pmatrix}$$

a) Ist das Dreieck gleichschenklig?

$$\overrightarrow{AB} = \begin{pmatrix} 2-2\\2-2\\6-3 \end{pmatrix} = \begin{pmatrix} 0\\0\\3 \end{pmatrix} \text{ und } |\overrightarrow{AB}| = \begin{vmatrix} 0\\0\\3 \end{vmatrix} = 3$$

$$\overrightarrow{AC} = \begin{pmatrix} 2-2\\5-2\\3-3 \end{pmatrix} = \begin{pmatrix} 0\\3\\0 \end{pmatrix} \text{ und } |\overrightarrow{AC}| = \begin{vmatrix} 0\\3\\0 \end{vmatrix} = 3$$

Ergebnis:

Die Seiten AB und AC haben die gleiche Länge, folglich ist das Dreieck ABC gleichschenklig.

Aufgabe 1 – Lösung

b) Ist das Dreieck rechtwinklig?

Wir haben zu prüfen, ob das Skalarprodukt $\overrightarrow{AB} \cdot \overrightarrow{AC} = 0$ ist.

Es folgt
$$\begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 3 \\ 0 \end{pmatrix} = 0 \cdot 0 + 0 \cdot 3 + 3 \cdot 0 = 0$$

Ergebnis: Das Dreieck ist bei A rechtwinklig.

c) Flächeninhalt des Dreiecks

$$A = \frac{1}{2} \cdot \left| \overrightarrow{AB} \right| \cdot \left| \overrightarrow{AC} \right| = \frac{1}{2} \cdot 3 \cdot 3 = 4,5$$

Ergebnis: Die Fläche des Dreiecks beträgt 4,5 LE².

Aufgabe 2

Die Punkte A(3|1|4), B(-1|1|7) und C(6|x|8) bilden ein Dreieck.

Bestimmen Sie x so, dass das Dreieck mit $|\overrightarrow{AB}| = |\overrightarrow{AC}|$ gleichschenklig ist.

Aufgabe 2 – Lösung

Wir bestimmen zunächst \overrightarrow{AB} und \overrightarrow{AC} :

$$\overrightarrow{AB} = \begin{pmatrix} -1 - 3 \\ 1 - 1 \\ 7 - 4 \end{pmatrix} = \begin{pmatrix} -4 \\ 0 \\ 3 \end{pmatrix}$$

$$|\overrightarrow{AB}| = \begin{vmatrix} -4 \\ 0 \\ 3 \end{vmatrix} = \sqrt{(-4)^2 + 0^2 + 3^2} = 5$$

$$\overrightarrow{AC} = \begin{pmatrix} 6 - 3 \\ x - 1 \\ 8 - 4 \end{pmatrix} = \begin{pmatrix} 3 \\ x - 1 \\ 4 \end{pmatrix}$$

$$|\overrightarrow{AC}| = \begin{vmatrix} 3 \\ x - 1 \\ 4 \end{vmatrix} = \sqrt{3^2 + (x - 1)^2 + 4^2} = \sqrt{(x - 1)^2 + 25}$$

Aufgabe 2 – Lösung

$$\left| \overrightarrow{AB} \right| = 5$$
$$\left| \overrightarrow{AC} \right| = \sqrt{(x-1)^2 + 25}$$

Gleichsetzen der beiden Längen liefert eine Gleichung, die wir nach x auflösen können:

$$\sqrt{(x-1)^2 + 25} = 5$$
 | ²
 $(x-1)^2 + 25 = 25$ | -25
 $(x-1)^2 = 0$

Nun erkennt man sofort mit x = 1 die Lösung.

Ergebnis: Der Punkt C(6|1|8) macht die Punkte A, B und C zu einem gleichschenkligen Dreieck.

Pflichtteil 2015

Aufgabe 6:

Gegeben sind die drei Punkte A(4|0|4), B(0|4|4), C(6|6|2).

- a) Zeigen Sie, dass das Dreieck ABC gleichschenklig ist.
- b) Bestimmen Sie die Koordinaten eines Punktes, der das Dreieck ABC zu einem Parallelogramm ergänzt.
 - Veranschaulichen Sie durch eine Skizze, wie viele solcher Punkte es gibt.

(5 VP)

Pflichtteil 2015

Lösung:

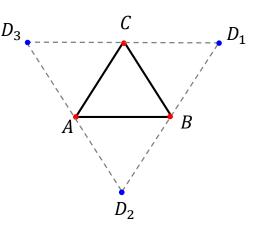
a) Behauptung: Das Dreieck ABC ist gleichschenklig

Es gilt
$$\overrightarrow{AC} = \begin{pmatrix} 2 \\ 6 \\ -2 \end{pmatrix}$$
, $\overrightarrow{BC} = \begin{pmatrix} 6 \\ 2 \\ -2 \end{pmatrix}$ also $|\overrightarrow{AC}| = \sqrt{2^2 + 6^2 + (-2)^2} = \sqrt{44}$

und $|BC| = \sqrt{6^2 + 2^2 + (-2)^2} = \sqrt{44}$. Folglich ist $|\overrightarrow{AC}| = |\overrightarrow{BC}|$ und das Dreieck ABC wie behauptet gleichschenklig.

b) Parallelogramm

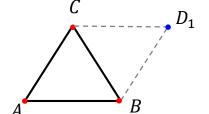
Wie die nebenstehende Skizze zeigt, gibt es drei Punkte, D_1 , D_2 und D_3 , durch die das Dreieck zu einem Parallelogramm ergänzt werden kann.



Pflichtteil 2015

Mit der Gleichung $\overrightarrow{0A} + \overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{0D_1}$ lässt sich z.B. D_1 bestimmen und es gilt:

$$\overrightarrow{0D_1} = \begin{pmatrix} 4 \\ 0 \\ 4 \end{pmatrix} + \begin{pmatrix} -4 \\ 4 \\ 0 \end{pmatrix} + \begin{pmatrix} 2 \\ 6 \\ -2 \end{pmatrix} = \begin{pmatrix} 2 \\ 10 \\ 2 \end{pmatrix}$$



Ergebnis: Einer der Punkte, der das Dreieck ABC zu einem Parallelogramm ergänzt ist $D_1(2|10|2)$.

Analog erhält man die beiden anderen möglichen Punkte: $D_2(-2|-2|6)$ und $D_3(10|2|2)$.